Extending the Decision Tree Framework to Handle Classification Certainty
نویسنده
چکیده
In this technical report a novel method is proposed that extends the decision tree framework, allowing standard decision tree classifiers to provide a unique certainty value for every input sample they classify. This value is calculated for every input sample individually and represents the classifier's certainty in the classification. The algorithm proposed in this report is not limited to axis-parallel trees, it can be applied to any kind of decision tree where the decisions are hyperplanes.
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملComparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...
متن کاملComparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...
متن کاملSteel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm
Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...
متن کاملA Proposed Method to Handle Classification Uncertainty Using Decision Trees
A novel method is proposed in this paper to handle the classification uncertainty using decision tree classifiers. The algorithm presented here extends the decision tree framework to give the ability of measuring the confidence of the classification. Using this algorithm a certain number of the input samples are rejected as “risky points” in order to obtain a smaller misclassification rate on t...
متن کامل